El aprendizaje de la matemática a largo plazo: un análisis a la experiencia en el aula

Authors

  • Diana Isabel Quintero-Suica dquintero72@uan.edu.co
    Universidad Antonio Nariño
  • Gerardo Antonio Chacón Guerrero gerardoachg@uan.edu.co

DOI:

10.37618/PARADIGMA.1011-2251.2024.e2024009.id1429

Keywords:

Razonamiento repetido. Solución de problemas. Organización y reorganización del conocimiento. Esquemas mentales.

Abstract

Using grounded theory methods in the framework of a qualitative research, the productions of seven Colombian high school students are analyzed when solving three mathematical problems that seek to promote long-term mathematical learning. Nine actions categorized in four levels are identified, according to the functions assigned by the participants during the solution of the problems, and the way in which they are articulated in a general repeated reasoning scheme constituted by four fundamental aspects: i) the general category and problem-instances, ii) the Basic Unit of Actions-BUA, iii) the Unit of Adjustment Actions - UAA, and iv) the organized and reorganized mental schemes. The idea of a recursive view of problem solving, as established by Kieren and Pirie (1990), is concluded and reinforced, and the same view is adopted for repeated reasoning when solving mathematical problems.

Downloads

Download data is not yet available.

References

COOPER, R. The role of mathematical transformations and practice in mathematical development. En L.P. Steffe (Eds.), Epistemological foundations of mathematical experience, (pp. 102-123). New York: Springer Verlag, 1991.
HAREL, G. DNR-Based instruction in mathematics as a conceptual framework. En: SRIRAMAN, B.; ENGLISH, P. (eds.). Theories of Mathematics Education Advances in Mathematics Education. London: Springer-Verlag Berlin Heidelberg, 2010. p. 343-367.
HAREL, G. The learning and teaching of multivariable calculus: a DNR perspective. ZDM, v. 53 , p. 709-721, 2021.
KIEREN, T.; PIRIE, S. Recursion and the mathematical experience. En STEFFE L.P. (ed.), Epistemological foundations of mathematical experience, (pp. 78-101). New York: Springer Verlag, 1991.
MORENO-ARMELLA, L. Preface to part XI DNR-Based Instuction in Mathematics as a conceptual framework by Guershon Harel. En SRIRAMAN, B.; ENGLISH, P. (eds.). Theories of Mathematics Education Advances in Mathematics Education, (pp. 341-342). Londres: Springer-Verlag Berlin Heidelberg, 2010.
SFARD, A. Thinking as communicating. Londres: Cambridge University Press, 2008.
STRAUSS, A.; CORBIN, J. Bases de la investigación cualitativa. Técnicas y procedimientos para desarrollar la teoría fundamentada. Medellín: Editorial Universidad de Antioquia, 2002.
VOLLSTEDT,M.; REZAT, S. An Introduction to grounded theory with a special focus on axial coding and the coding paradigm. En: KAISER, G.; PRESMEG, N. (eds.). Compendium for early career researchers in mathematics education. ICME-13 Monographs. Switzerland: Springer Cham, 2019, p.81-100.

Published

2024-07-01

Métricas


Visualizações do artigo: 44     PDF (Español (España)) downloads: 39

How to Cite

Quintero-Suica, D. I., & Chacón Guerrero, G. A. (2024). El aprendizaje de la matemática a largo plazo: un análisis a la experiencia en el aula. PARADIGMA, 45(2), e2024009. https://doi.org/10.37618/PARADIGMA.1011-2251.2024.e2024009.id1429