Estudio de Clases Japonés, su Naturaleza y su Impacto en la Enseñanza y el Aprendizaje de las Matemáticas
DOI:
10.37618/PARADIGMA.1011-2251.2023.p5-35.id1410Palabras clave:
Origen del Estudio de Clases. Desarrollo curricular en matemáticas. Pensamiento matemático. Conocimiento del profesor. Resolución de problemas.Resumen
Este artículo tiene como objetivo presentar un texto que resume los principales aspectos y detalles del Estudio de Clases Japonés, que se ha difundido sistemáticamente a países fuera de Japón desde 2006, y después de la publicación de un libro en inglés en 2007. El propósito de ofrecer un texto, en portugués, es facilitar a los estudiantes y profesores el acceso al conocimiento sobre Lesson Study-LS y su importancia para la enseñanza y el aprendizaje de las matemáticas. El artículo presenta los orígenes y el papel de LS a lo largo del siglo en la enseñanza de las matemáticas en Japón, discute su impacto en el desarrollo curricular en Japón en el pasado y en la actualidad, la importancia de LS para la formación del profesorado, la estructura de las actividades de LS, la Resolución de Problemas como un concepto central para desarrollar el pensamiento matemático en las actividades de LS, y teje consideraciones del reciente movimiento de difusión de LS.Descargas
Los datos de descargas todavía no están disponibles.
Citas
BECKER, J., & SHIMADA, S. (1997). Open-Ended Approach: A New Proposal for Teaching Mathematics (7th ed). National Council of Teachers of Mathematics. Reston.
BUSSI, M.G.B.; TAIMINA, D.; ISODA, M. (2010). Concrete models and dynamic instruments as early technology tools in classrooms at the dawn of ICMI: from Felix Klein to present applications in mathematics classrooms in different parts of the world. ZDM Mathematics Education, 42, 19-31.
CHOKSHI, S., & FERNANDEZ, C. (2004). Challenges to importing Japanese lesson study: Concerns, misconceptions and nuances. Phi Delta Kappan, 85, 520-525.
FERNANDEZ., & YOSHIDA, M. (2004). Lesson Study: a Japanese approach to improving Mathematics teaching and learning. Lawrence Erlbaum Associates.
FREUDENTHAL, H. (1973). Mathematics as an Educational Task. D. Reidel Publishing Company.
HIEBERT, J. (Ed.). (1986). Conceptual and procedural knowledge: the case of Mathematics. Lawrence Erlbaum Associates.
ISODA, M. (1996). Problem solving approach beyond cognitive conflicts based on conceptual and procedural knowledge at primary school. Tokyo, Japan: Meijitosho. (Written in Japanese).
ISODA, M. (2009). Theory of conceptual and procedural knowledge into Japanese problem-solving approach. In C. Litwin, edited. (Ed.). Proceedings of the Conference on Mathematics Teaching and Assessment. Hong Kong, China: Hong Kong Institute of Education.
ISODA, M. (2012). Introductory chapter: Problem solving approach to develop mathematical thinking. In M. Isoda, & S. Katagiri (Eds.). Mathematical thinking: How to develop it in the classroom (pp. 1-28). World Scientific.
ISODA, M. (2015). The Science of Lesson Study in the Problem-Solving Approach: In INPRASITHA, M.; ISODA, M.; WANG-IVERSON, P.; YAP, B. (Eds.). Lesson study: Challenges of mathematics education (pp. 81-108). World Scientific.
ISODA, M. (2018). Mathematization: A theory for curriculum design. In Kawazoe, M. (Ed). Proceedings of the International Workshop on Mathematics Education for Non-Mathematics Students Developing Advanced Mathematical Literacy (pp. 27-34). http://iwme.jp/pdf/ Proceedings_IWME2018.pdf
ISODA, M. (2020). Producing theories for mathematics education through collaboration: A historical development of Japanese lesson study. In H, Borko, D. Potari (Eds.). Proceedings of 25 ICMI Studies: Teachers of Mathematics Working and Learning in Collaborative Groups (pp. 15-22). University of Lisbon.
ISODA, M. . (2016). Dialectic on the problem-solving approach: Illustrating hermeneutics as the ground theory for lesson study in mathematics education. In CHO, S. J. (Ed.). Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 355-381). Springer.
ISODA, M. . (2019). The Road of the German Book Praktische Analysis into Japanese Secondary School Mathematics Textbooks (1943-1944): An Influence of the Felix Klein Movement on Asia. In WEIGAND, H.; MCCALLUM, W.; MENGHINI, M.; NEUBRAND, M.: SCHUBRING, G. (Eds.). The Legacy of Felix Klein. Springer. https://doi.org/10.1007/978-3-319-99386-7
ISODA, M. (1992). Designing problem solving approach with cognitive conflict and appreciation. Hokkaido University of Education (written in Japanese).
ISODA, M., & KATAGIRI, S. (Eds). (2016). Pensamiento matemático: Cómo desarrollarlo en la sala de clases (2ª. ed.). CIAE (Centro de Investigación Avanzada en Educación): Universidad de Chile.
ISODA, M., & KATAGIRI, S. (Eds.). (2012). Mathematical Thinking: How to Develop it in the Classroom. Monographs on Lesson Study for Teaching Mathematics and Sciences-Vol 1. World Scientific.
ISODA, M., & OLFOS, R. (2009). El enfoque de resolución de problemas en la enseñanza de la matemática a partir del estudio de clases (Problem solving approach: Mathematics teaching on lesson study). Ediciones Universitarias de Valparaíso.
ISODA, M., & OLFOS, R. (2021). Teaching Multiplication with Lesson Study. Springer.
ISODA, M.; STEPHENS, M.; OHARA, Y., & MIYAKAWA, T. (Eds.) (2007). Japanese Lesson Study in Mathematics: Its Impact, Diversity and Potential for Educational Improvement. World Scientific.
ITO, T. (1968). Modernization of teaching problem solving. Meijitosho. (Written in Japanese). (1971 English version).
ITO, T. (1971). The theory and methods on discovery teaching. Journal of Saitama University, Science of Education, 20, 75-88.
KATAGIRI, S., SAKURAI, T., TAKAHASI, E., & OSHIMA, T. (1971). Mathematical thinking and its teaching at primary school. Tokyo, Japan: Kindasishinsyo.
KATAGIRI, S.; SAKURAI, T., & TAKAHASI, E. (1969). Mathematical thinking and its teaching. Journal of the Research Institute of Education for Capital Tokyo, 1, 83-155.
KOBAYASHI, M. (1989). New ideas of teaching mathematics in Japan. Tokyo, Japan: Chyuou Daigaku Publisher.
MANGAO, D. D.; AHMAD, N. J., & ISODA, M. (2017). SEAMEO Basic Education Standards (SEA-BES): Common Core Regional Learning Standards (CCRLS) in Mathematics and Science. SEAMEO RECSAM. http://www.recsam.edu.my/sub_SEA-BES/ images/docs/CCRLSReport.pdf.
MINISTRY OF EDUCATION. (1947). Course of study for school mathematics (recommendation). Ministry of Education.
MINISTRY OF EDUCATION. (1956). Course of study for high school mathematics. Ministry of Education.
NOHDA, N. (2000). Teaching by open-approach method in Japanese mathematics classroom. In T. Nakahara, & M. Koyama (Eds.). Proceeding of the 24th Conference of the International Group for the Psychology of Mathematics Education (PME 24) (pp. 39-54). Hiroshima University.
ODAKA, T. (1969, 1975, 1979, 1980). School Mathematics Study Society at the Junior Secondary School of the Tokyo University of Education: Experimental study of new mathematics – Planning. Kindaishinsho.
ODAKA, T., & OKAMOTO, K. (1982). Task sequence for junior secondary school mathematics lessons: Exemplar approach based on schema theory. Tokyokan.
POLYA, G. (1945). How to solve it. Princeton University Press.
SHIMIZU, S. (1984). Designing mathematics education for students who learn mathematics by and for themselves. Epsilon: Mathematics Education Journal of the Aichi University of Education, 26, 92-114.
SMITH, A., & MIKAMI Y. (1914). A history of Japanese mathematics. Chicago: Open Court Pub. Co.
STIGLER, J. W., & HIEBERT, J. (1999). The Teaching Gap: best ideas from the world’s teachers for improving education in the classroom. The Free Press.
WAKABAYASHI, T., & SHIRAI, T. (1883). Revision of Teaching (written in Japanese). Fukusha.
WATANABE, T. (2018). Japanese Lesson Study in the United States: Looking back and looking ahead. Educational Designer, 3(11). http://www.educationaldesigner.org/ed/ volume3/issue11/article43.
BUSSI, M.G.B.; TAIMINA, D.; ISODA, M. (2010). Concrete models and dynamic instruments as early technology tools in classrooms at the dawn of ICMI: from Felix Klein to present applications in mathematics classrooms in different parts of the world. ZDM Mathematics Education, 42, 19-31.
CHOKSHI, S., & FERNANDEZ, C. (2004). Challenges to importing Japanese lesson study: Concerns, misconceptions and nuances. Phi Delta Kappan, 85, 520-525.
FERNANDEZ., & YOSHIDA, M. (2004). Lesson Study: a Japanese approach to improving Mathematics teaching and learning. Lawrence Erlbaum Associates.
FREUDENTHAL, H. (1973). Mathematics as an Educational Task. D. Reidel Publishing Company.
HIEBERT, J. (Ed.). (1986). Conceptual and procedural knowledge: the case of Mathematics. Lawrence Erlbaum Associates.
ISODA, M. (1996). Problem solving approach beyond cognitive conflicts based on conceptual and procedural knowledge at primary school. Tokyo, Japan: Meijitosho. (Written in Japanese).
ISODA, M. (2009). Theory of conceptual and procedural knowledge into Japanese problem-solving approach. In C. Litwin, edited. (Ed.). Proceedings of the Conference on Mathematics Teaching and Assessment. Hong Kong, China: Hong Kong Institute of Education.
ISODA, M. (2012). Introductory chapter: Problem solving approach to develop mathematical thinking. In M. Isoda, & S. Katagiri (Eds.). Mathematical thinking: How to develop it in the classroom (pp. 1-28). World Scientific.
ISODA, M. (2015). The Science of Lesson Study in the Problem-Solving Approach: In INPRASITHA, M.; ISODA, M.; WANG-IVERSON, P.; YAP, B. (Eds.). Lesson study: Challenges of mathematics education (pp. 81-108). World Scientific.
ISODA, M. (2018). Mathematization: A theory for curriculum design. In Kawazoe, M. (Ed). Proceedings of the International Workshop on Mathematics Education for Non-Mathematics Students Developing Advanced Mathematical Literacy (pp. 27-34). http://iwme.jp/pdf/ Proceedings_IWME2018.pdf
ISODA, M. (2020). Producing theories for mathematics education through collaboration: A historical development of Japanese lesson study. In H, Borko, D. Potari (Eds.). Proceedings of 25 ICMI Studies: Teachers of Mathematics Working and Learning in Collaborative Groups (pp. 15-22). University of Lisbon.
ISODA, M. . (2016). Dialectic on the problem-solving approach: Illustrating hermeneutics as the ground theory for lesson study in mathematics education. In CHO, S. J. (Ed.). Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 355-381). Springer.
ISODA, M. . (2019). The Road of the German Book Praktische Analysis into Japanese Secondary School Mathematics Textbooks (1943-1944): An Influence of the Felix Klein Movement on Asia. In WEIGAND, H.; MCCALLUM, W.; MENGHINI, M.; NEUBRAND, M.: SCHUBRING, G. (Eds.). The Legacy of Felix Klein. Springer. https://doi.org/10.1007/978-3-319-99386-7
ISODA, M. (1992). Designing problem solving approach with cognitive conflict and appreciation. Hokkaido University of Education (written in Japanese).
ISODA, M., & KATAGIRI, S. (Eds). (2016). Pensamiento matemático: Cómo desarrollarlo en la sala de clases (2ª. ed.). CIAE (Centro de Investigación Avanzada en Educación): Universidad de Chile.
ISODA, M., & KATAGIRI, S. (Eds.). (2012). Mathematical Thinking: How to Develop it in the Classroom. Monographs on Lesson Study for Teaching Mathematics and Sciences-Vol 1. World Scientific.
ISODA, M., & OLFOS, R. (2009). El enfoque de resolución de problemas en la enseñanza de la matemática a partir del estudio de clases (Problem solving approach: Mathematics teaching on lesson study). Ediciones Universitarias de Valparaíso.
ISODA, M., & OLFOS, R. (2021). Teaching Multiplication with Lesson Study. Springer.
ISODA, M.; STEPHENS, M.; OHARA, Y., & MIYAKAWA, T. (Eds.) (2007). Japanese Lesson Study in Mathematics: Its Impact, Diversity and Potential for Educational Improvement. World Scientific.
ITO, T. (1968). Modernization of teaching problem solving. Meijitosho. (Written in Japanese). (1971 English version).
ITO, T. (1971). The theory and methods on discovery teaching. Journal of Saitama University, Science of Education, 20, 75-88.
KATAGIRI, S., SAKURAI, T., TAKAHASI, E., & OSHIMA, T. (1971). Mathematical thinking and its teaching at primary school. Tokyo, Japan: Kindasishinsyo.
KATAGIRI, S.; SAKURAI, T., & TAKAHASI, E. (1969). Mathematical thinking and its teaching. Journal of the Research Institute of Education for Capital Tokyo, 1, 83-155.
KOBAYASHI, M. (1989). New ideas of teaching mathematics in Japan. Tokyo, Japan: Chyuou Daigaku Publisher.
MANGAO, D. D.; AHMAD, N. J., & ISODA, M. (2017). SEAMEO Basic Education Standards (SEA-BES): Common Core Regional Learning Standards (CCRLS) in Mathematics and Science. SEAMEO RECSAM. http://www.recsam.edu.my/sub_SEA-BES/ images/docs/CCRLSReport.pdf.
MINISTRY OF EDUCATION. (1947). Course of study for school mathematics (recommendation). Ministry of Education.
MINISTRY OF EDUCATION. (1956). Course of study for high school mathematics. Ministry of Education.
NOHDA, N. (2000). Teaching by open-approach method in Japanese mathematics classroom. In T. Nakahara, & M. Koyama (Eds.). Proceeding of the 24th Conference of the International Group for the Psychology of Mathematics Education (PME 24) (pp. 39-54). Hiroshima University.
ODAKA, T. (1969, 1975, 1979, 1980). School Mathematics Study Society at the Junior Secondary School of the Tokyo University of Education: Experimental study of new mathematics – Planning. Kindaishinsho.
ODAKA, T., & OKAMOTO, K. (1982). Task sequence for junior secondary school mathematics lessons: Exemplar approach based on schema theory. Tokyokan.
POLYA, G. (1945). How to solve it. Princeton University Press.
SHIMIZU, S. (1984). Designing mathematics education for students who learn mathematics by and for themselves. Epsilon: Mathematics Education Journal of the Aichi University of Education, 26, 92-114.
SMITH, A., & MIKAMI Y. (1914). A history of Japanese mathematics. Chicago: Open Court Pub. Co.
STIGLER, J. W., & HIEBERT, J. (1999). The Teaching Gap: best ideas from the world’s teachers for improving education in the classroom. The Free Press.
WAKABAYASHI, T., & SHIRAI, T. (1883). Revision of Teaching (written in Japanese). Fukusha.
WATANABE, T. (2018). Japanese Lesson Study in the United States: Looking back and looking ahead. Educational Designer, 3(11). http://www.educationaldesigner.org/ed/ volume3/issue11/article43.
Descargas
Publicado
06-05-2023
Métricas
Visualizações do artigo: 251 PDF (English) downloads: 61 PDF (Português (Brasil)) downloads: 99
Cómo citar
Isoda, M., & Baldin, Y. Y. (2023). Estudio de Clases Japonés, su Naturaleza y su Impacto en la Enseñanza y el Aprendizaje de las Matemáticas. PARADIGMA, 44(2), 5–35. https://doi.org/10.37618/PARADIGMA.1011-2251.2023.p5-35.id1410
Número
Sección
Artículos