TRASCENDENCIA DE LA RESOLUCION DE PROBLEMAS DE MATEMATICA
DOI:
10.37618/PARADIGMA.1011-2251.1987.p247-259.id120Abstract
En este trabajo se muestra, de manera sucinta, como se ha desarrollado la matemática a partir de los esfuerzos por resolver los problemas que ella misma se plantea; por esto, se sostiene que la resolución de problemas es una actividad de trascendental importancia en Matemática, no solo porque contribuyen al desarrollo de la misma como ciencia sino, además, porque posibilita la transferencia del aprendizaje, mejora la capacidad analítica, incrementa la motivación y contribuye a una mejor comprensión de la naturaleza de la Matemática. Además de lo anterior, también se establecen cuales son los factores que deben estar presentes en una determinada situación para que esta se convierta en un problema para un individuo en particular. Así, se sostiene que todo problema, para que sea tal, deben darse factores objetivos (propios de la situación) y factores subjetivos (inherentes al sujeto que debe enfrentar la situación). Se establecen diferencias entre problemas y ejercicios y, finalmente, se detallan los Modelos de Resolución de Problemas más conocidos (Dewey, Polya, Bell).Downloads
Download data is not yet available.
Downloads
Published
2015-04-07
Métricas
Visualizações do artigo: 51 PDF (Español (España)) downloads: 57
How to Cite
Gonzalez (IUPEMAR-Maracay,Venezuela), F. E. (2015). TRASCENDENCIA DE LA RESOLUCION DE PROBLEMAS DE MATEMATICA. PARADIGMA, 8(1y2), 247–259. https://doi.org/10.37618/PARADIGMA.1011-2251.1987.p247-259.id120
Issue
Section
Artículos